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Abstract: This paper reports on a new automated and openly avail-
able tool for automatic acoustic analysis and transcription of primate
calls, which takes raw field recordings and outputs call labels time-
aligned with the audio. The system’s output predicts a majority of the
start times of calls accurately within 200 milliseconds. The tools do
not require any manual acoustic analysis or selection of spectral fea-
tures by the researcher.
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1. Introduction

A central topic in bioacoustics is the description of animal call repertoires, including
what the calls are and how they are combined and used. However, traditional acoustic
analysis of calls requires a significant amount of manual work, which means that only
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Fig. 1. Spectrograms of calls. Left: Blue monkey Hack (top) and Pyow (bottom)
calls; center: Titi A (top) and B (bottom); right: Colobus Roar sequence (top) and
Snort (bottom).

a fraction of the data collected in the field is actually used, and the majority of the oth-
erwise useful data does not serve its role in answering scientific questions (Kobayasi
and Riquimaroux, 2012). Recently, techniques from speech processing have been ap-
plied to animal vocalizations. The key advance they offer is to bypass a step where
researchers extract preselected acoustic features, such as durations or peak frequen-
cies. Standard speech processing tools represent signals using rich, general purpose
spectral representations, with no hand selection of acoustic features. Previous analy-
ses automatically classified isolated calls by call type, species, and caller using such
representations (Mielke and Zuberbühler, 2013). Our system, in addition to labeling
isolated calls, detects and labels calls in raw field recordings. We apply it to three pri-
mate species with acoustically diverse calls (see Figure 1): Blue monkeys (Cercopithecus
mitis), Titi monkeys (Callicebus nigrifrons), and Colobus monkeys (Colobus guereza).

2. Data sets

Recordings of three species were taken from several field researchers for a total of 5.58
hours of audio. A trained primatologist marked the start and end times (calls typically
do not overlap) and labeled each Blue monkey call as either Hack or Pyow (Arnold and
Zuberbühler, 2006), Colobus calls as Roar or Snort (Marler, 1972), and Titi calls as A
or B (Cäsar et al., 2012). Table 1 documents the length of the audio recordings for each
data set, the percentage of that time taken up by calls, and the token count for each
type of call. Estimated signal-to-noise ratios for these data sets (Vondrášek and Pollák,
2005) were low (between 0.5 and 5.3), typical of field recordings in primatology.

Species Source (location) Recorder Microphone Dur (% calls) Types N

Blue
Murphy (Budongo
Reserve, Uganda)

Marantz
PMD660

Sennheiser
ME66-K6

1:56:45
(0.33%)

Hack
Pyow

145
108

Blue
Fuller (Kakamega
Forest, Kenya)

Marantz
PMD660

Sennheiser
ME67

0:59:15
(4.31%)

Hack
Pyow

510
364

Titi
Cäsar (Serra do
Caraça, Brazil)

Marantz
PMD660

Sennheiser
ME66-K6

0:11:58
(3.24%)

A
B

125
539

Colobus
Schel (Budongo
Reserve, Uganda)

Sony
TCD D8

Sennheiser
ME66-K6

2:27:02
(5.09%)

Roar
Snort

739
141

Table 1. Total length of audio recordings, information about collection, percentage
of the signal where calls were present, and count of each labeled call type.

Acoustic features were automatically extracted from the audio recordings us-
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ing a standard speech feature extraction pipeline, adapted minimally. Since the record-
ings had non-zero mean and varying average amplitudes within each recording due
to recording conditions and manual adjustment of the gain levels by field scientists,
we removed the DC component with a notched high pass filter. We increased the ratio
between calls and noise with a five-point temporal median filter (i.e., averaging win-
dows of five consecutive samples in the time domain) followed by a two-dimensional
three-point median filter pass in the spectral domain. The first enhances the ratio of the
amplitude of the calls to noise, and the second flattens the spectrum for low transient
noise passages and enhances the contrast with calls. We then estimated a noise signa-
ture based on the spectral components of the first half second of each audio file (which
never included a call) and subtracted this noise signature from the rest of the audio
stream. We calculated spectral representations of the signal using short-term Fourier
transforms on overlapping windows of 25ms shifted by 10ms, and transformed the
frequency components through a set of 40 filters evenly spaced on the Mel scale. This
filter distribution is common in speech processing and is copied here for generality.
Finally, each filter was mean-variance normalized independently.

3. Classification system

In this section we describe three experiments classifying isolated calls using the generic
acoustic features just described. Each call was represented by concatenating the first
50 frames from the call onset (a 40⇥50 = 2000-dimensional vector, corresponding
to 515 ms), capturing the full length of 84% of calls. In Experiment 1, we assessed
the ability to classify call types within each species based on these representations. In
Experiment 2, we assessed classification of species. In Experiment 3, we assessed the
six-way labeling of species and call type required when all three species are pooled.

To predict the calls, we used a sparse radial basis function support vector ma-
chine (SVM) trained with block coordinate descent with squared hinge loss and L1
regularization. This is a standard statistical approach to classification problems that
may not be amenable to classification using a linear model. Instead of computing the
full Gram matrix of the kernel, we employ the Nyström approximation to significantly
speed up the training time of our classifiers (Williams and Seeger, 2001). The approxi-
mation computes the eigendecomposition on a random small subset of the Gram matrix
and scales the results up to the original number of dimensions (the number of sam-
ples). We achieved good results with a 500-component approximation. Experiments 2
and 3 involve more than two classes, so we employed a one-versus-rest strategy (train-
ing N individual binary classifiers, where N is the number of classes). Training was on
80% of the data, with evaluation on the remaining, unseen, 20%. Three hyperparam-
eters (weight of the loss term, C, weight of the penalty term, �, and kernel coefficient,
�) were optimized using the sequential model-based algorithm configuration (SMAC)
technique (Hutter et al., 2011) by 5-fold cross-validation within the training set.

Table 2 shows the results of Experiments 1–3. We give precision (positive pre-
dictive value: among the calls the classifier gives label x, the fraction that are actually
x and not false positives) and recall (sensitivity: among the calls that should be la-
belled x, the fraction that are labelled x and not false negatives), and F1 (2 ·precision ·
recall/(precision + recall)). Classification was good, with average F1 of between 0.91
and 0.99. Experiment 1 extends previous findings using different methodology and
new species (Mielke and Zuberbühler, 2013). Experiments 1 and 3 were repeated with
subsets of increasing sizes of the full (i.e., 80%) training set. Figure 2 shows the F1

score on the test set as a function of the number of annotated calls given for training.

4. Automatic transcription system

In Experiment 4, we trained a call transcription system whose input is raw, unseg-
mented field recordings. It predicts call labels using a support vector machine and uses
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Labels Precision Recall F1 score Test Support

Expt 1

Blue Hack 0.97 0.99 0.98 131
Blue Pyow 0.99 0.96 0.97 95
Average 0.98 0.98 0.98

Colobus Roar 0.94 1.00 0.97 148
Colobus Snort 1.00 0.68 0.81 28
Average 0.95 0.95 0.94

Titi A 0.89 0.68 0.77 25
Titi B 0.93 0.98 0.95 108
Average 0.92 0.92 0.92

Expt 2

Blue 0.99 0.98 0.98 226
Titi 0.99 0.98 0.98 176
Colobus 0.98 1.00 0.99 133
Average 0.99 0.99 0.99

Expt 3

Blue Hack 0.99 0.95 0.97 131
Blue Pyow 0.95 0.95 0.95 95
Colobus Roar 0.86 0.97 0.91 148
Colobus Snort 0.92 0.43 0.59 28
Titi A 0.85 0.68 0.76 25
Titi B 0.88 0.94 0.91 108
Average 0.91 0.91 0.91

Table 2. Classification results for Experiments 1 (call type, within species), 2
(species only), and 3 (species and call type).

Fig. 2. (color online) Classification performance (y) by species, as a function of the
number of annotated calls provided in the training set (x).
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a conditional random field (CRF) to correct unlikely sequences.
The SVM was trained on annotated data to predict call labels from individ-

ual frames. Input features consisted of a concatenation of MFCC features (13 cepstral
coefficients with first and second derivatives) with activations from a voice activity de-
tection (VAD) system (Lee and Hasegawa-Johnson, 2007). The classifier was trained
within species to predict one of the two call types or a third class indicating the ab-
sence of a call. The sequence of Platt-calibrated predictions of the SVM were used as
input to a linear chain CRF. The CRF’s predictions are also sequences of frame labels,
but the CRF takes into account statistical dependencies between adjacent frames and
smoothes the predictions in the time domain. The hyperparameters of the SVM and the
CRF were optimized using SMAC. We evaluated on a 10% held out test set. The third
label (absence of any call) is removed from the output for evaluation.

The system outputs call sequences, time-aligned with an audio file. We evalu-
ate these transcriptions for the held-out test data. Considering the sequences of calls
(not the alignment with the audio), we evaluate using word error rate (WER) and
match error rate (MER), used in speech recognition (Morris et al., 2004). Results are
in Table 3. The majority of calls are correctly identified. Most errors are deletions (miss-
ing calls) for Blue and Colobus monkeys and insertions (noise identified as calls) for
Titis, perhaps because Titi calls are high frequency, similar to the noise.

Species WER MER H D S I N

Blue 35.1% 32.1% 213 69 6 26 288
Colobus 34.4% 33.8% 106 47 4 3 157
Titi 32.9% 28.1% 68 8 6 14 82

Table 3. Evaluation of transcriber: word and match error rate (WER, MER), number
of hits (H), deletions (D), substitutions (S), insertions (I) and number of calls (N).

To evaluate how well the predicted calls are time-aligned, we match each call
in the gold transcription to the nearest predicted call whose onset and offset are within
a 200ms tolerance of the real onset and offset, and count a gold call as having a true
positive only if it has such a match, and that match is correctly labelled; otherwise, it
counts as a false negative. Similarly, for each predicted call, we look for the nearest
such match among the calls in the gold transcription, and count a false positive if there
is no match or if the match is mislabelled. Since it is likely easier to accurately mark
the onsets of calls than their offsets, both for our human annotator and for the tran-
scription system, we also compute an alternative scoring in which only call onsets need
to be matched within the 200ms tolerance. For both scorings, we compute precision,
recall, and F1, as shown in Table 4. The results show that call onsets are indeed much
easier to match to the annotation than offsets, particularly for Colobus monkeys, where
performance is relatively poor when offsets are required to be correctly marked.

5. Conclusions

General purpose acoustic features and voice activity detection techniques, as used in
speech recognition, can automate the labeling of primate calls, both in isolation and
in unannotated recordings, using data representative of field recordings. The system
needs to be bootstrapped by a set of annotated examples. We showed that good isolated
call labelling requires less than 200 labelled examples. It accurately transcribes around
90 percent of the frames in an audio file, vastly reducing the amount of manual work.

The results also imply that generic acoustic features, rather than specialized
acoustic measurements taken manually by the researcher, can be used for detailed
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Call detection Onset detection

Species Precision Recall F1 Precision Recall F1

Blue 0.76 0.65 0.70 0.85 0.72 0.78
Colobus 0.46 0.33 0.38 0.74 0.54 0.62
Titi 0.63 0.68 0.66 0.71 0.77 0.74

Table 4. Evaluation of predicted calls versus the nearest gold transcribed call with
both its onset and offset (left) or just its onset (right) within 200 ms.

analysis. For example, there are competing descriptions of the call repertoires of cer-
tain species. Previous analyses have appealed to clustering analyses on hand-selected
acoustic features as evidence (Fuller, 2014; Keenan et al., 2013). The results here val-
idate an automated process of feature extraction that may be used as the input to
these analyses. Both results allow much larger data sets from the field to be used than
are currently being used for research and make it easier to create shared databases
between researchers. Our tools can be downloaded at http://github.com/mwv/mcr.
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