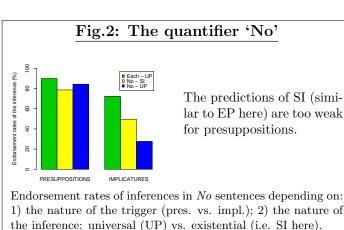
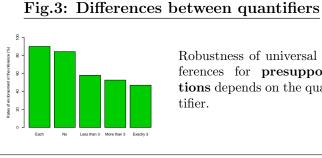

Presuppositions vs. Scalar Implicatures: an Experimental Study

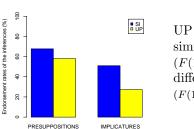
Emmanuel Chemla (LSCP and ENS, Paris) – e-mail: chemla \otimes ens.fr


Philippe Schlenker (UCLA and Institut Jean-Nicod)


Presuppositions trigger universal inferences (UP), sensitive to the monotonicity of the quantifier.

Implicatures do not trigger universal inferences.

Endorsement rates of inferences depending on: 1) nature of the trigger; 2) monotonicity of the quantifier (UE, DE or nonDE); 3) the form of the inference (UP or SI).



(Results for "Each" are given as a reference).

Robustness of universal inferences for **presupposi**tions depends on the quan-

Fig.4: The quantifier 'Less than 3'

UP and SI inferences are similar for presuppositions (F(1, 29) = 3.16; p = .086);different for implicatures (F(1, 29) = 17.2; p < .001).

Endorsement rates of inferences in Less than 3 sentences depending on: 1) the nature of the trigger (pres. vs. impl.); 2) the nature of the inference: universal (UP) vs. implicature-like (SI).

1. The problem

Sentences in (1) contain a presupposition trigger in the scope of a quantifier; what do they presuppose?

- (1) a. No student knows that he is stupid.
 - b. Less than 3 students know they are stupid.
 - c. More than 3 students know they are stupid.

Schematically: if \mathcal{Q} is a quantifier, if A and B are predicates, if B presupposes B', what does (2) presuppose?

(2) $[\mathcal{Q}x : A(x)]B(x)$ presupposes:

 $\exists x A(x) \land B'(x)?; \neg ([\mathcal{Q}x : A(x)]B'(x))?; [\forall x : A(x)]B'(x)?$

2. Proposals

Presuppositions are studied as a kind of **inferences**. (See Kadmon (2001) for discussion of UP and EP)

• Universal Presupposition (UP).

Heim (1983) and Schlenker (2006) both predict that every sentence in (1) presupposes:

(3) Every student is stupid.

Important note: Schlenker's derivation of presuppositions involves a competitor. This competitor may be degraded for independent reasons and this raises new predictions about relative strenghts of presuppositions (i.e. robustness of inferences across speakers, contexts...).

• Existential Presupposition (EP).

Beaver (1994, 2001) argues that sentences in (1) presuppose:

(4) There is a stupid student.

Note: In Upward Entailing (UE) contexts (e.g., (1c)), the presupposition is weaker than the assertion and, thus, does not produce detectable additional inferences.

• Scalar Implicature (SI).

EP predictions are weaker than what a straightforward theory in terms of scalar implicatures could predict. Assuming for instance that factive verbs are involved in asymmetrical scales like $\langle p, x$ know p >. The prediction is now that sentences in (1) imply respectively:

- (5) a. At least one student is stupid. *(similar to EP)* i.e. \neg (No student is stupid)
 - b. At least 3 students are stupid. (stronger than EP) i.e. \neg (Less than 3 students are stupid)

c. No additional inference (similar to EP) Important note: This account passes the S-sentences (negation, conditional, question) test for presuppositions.

3. Aims and questions

This debate has suffered from two difficulties:

1) Sentences in (1) raise two superfluous difficulties (domain restrictions and irrelevant bound readings) also present in original examples;

2) The judgments involved are too subtle to rely on the introspection abilities of a few people.

- With these difficulties in mind, our aim was to:
- Establish an effective methodology to obtain robust data
- Compare UP and SI (similar to or stronger than EP).
- Investigate finer-grained differences between quantifiers, triggers etc.

4. Experimental methodology

• 30 native speakers of French

• Context: After an exam session, 5 or 6 teachers individually met 10 students of their class (including a student named John); these teachers now informally discuss about their students. These teachers are very well informed about their students, honest, fair...

• Non logical inferential task, 2 examples were provided:

"John & Mary did A."		"John did A and B."		
suggests that:		suggests that:		
John did A.		John did A before B.		
No	Yes	No	Yes	

• We eliminated potential problems due to domain restrictions by explicitly referring to a particular set of individuals (e.g., None of these 10 students replaced No student).

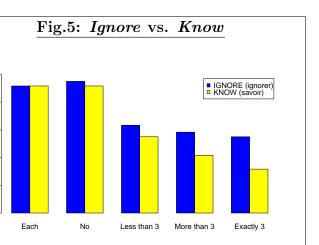
Experimental conditions

• Triggers:

- Presupposition triggers: know and ignore, start and stop, definite descriptions (his computer).
- Implicatures: <<u>all</u>,some>,<<u>and</u>,or>,<<u>excellent</u>,good>
- Environments:
- Inferences: universal (UP) and implicature-like (SI) - 'Quantifiers': John, I doubt that John, More than 3 of
- these 10 s., Each..., Less than 3..., None..., Exactly 3...

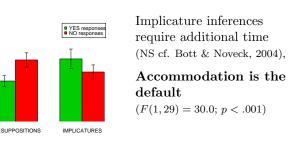
5. Four examples

- (Pres. triggered by know; quantifier: Less than 3-DE) 1. Less than 3 of these 10 students know that their father is about to receive a congratulation letter. \sim The father of each of these 10 students is about to receive a congratulation letter. (UP)2. Less than 3... know that their father is about to receive a c.l.
- (SI) \sim The father of at least 3... is about to receive a c.l.
- (Impl. triggered by $<\underline{and}, or>$; quantifier: No DE)
- 3. None... read the handout and did an exercise. \sim Each... did (at least) one or the other.
- (UP)4. None... read the handout and did an exercise \sim At least one... did (at least) one among the two.


6. Results

- Presuppositions are not implicatures (cf. Fig.1).
- No sentences trigger universal presuppositions (cf.
- Fig.2), EP (or SI) predictions are too weak.
- Fig.1 suggests that DE quantifiers enable strong universal inferences, a closer look may moderate this conclusion (cf. Fig.3). (This does not weaken the previous conclusion about SI or EP, cf. Fig.4).
- In certain environments, *ignore* may be 'more factive'
- than know (cf. Fig.5) as discussed by Schlenker.
- Resisting global accommodation is costly (cf. Fig.6).

7. Conclusions


- Efficient and simple **methodology**; crucial improvement of the data
- Universal presuppositions are established
- Presuppositions and scalar implicatures are differenti-
- ated (while classical presuppositions tests did not)
- Subtler differences as suggested by Schlenker (2006) become accessible

(SI)

Endorsement rates of universal inferences depending on 1) the factive verb (*ignore* vs. know) and 2) the quantifier in the target sentence.

Fig.6: Different processing profiles

Acceptation and rejection latencies for presupposition (UP inferences) and implicatures (SI inferences).

Notations:

UE/DE: Upward/Downward Entailing context (or quantifier by extension)

SI: Scalar Implicature (or inference predicted by scalar comparisons by extension)

UP: Universal Presupposition (or universal inference in general, for cases of scalar items)

The term "implicature" is often used as a shortcut for "(indirect) scalar implicature"

Acknowledgments:

The authors would like to thank the following people for their experimental, theoretical and practical help: Anne Christophe, Paul Egré, Anne-Caroline Fievet, Bart Geurts, Hugo Mercier and Benjamin Spector

References

Beaver, D., 1994. When Variables Don't Vary Enough. In M. Harvey, and L. Santelmann (eds.), Proceedings of SALT IV, CLC Publications, Cornell.

Beaver, D.: 2001, Presupposition and Assertion in Dynamic Semantics. CSLI, Stanford.

Bott, L. & Noveck, I.A. (2004). Some utterances are underinformative: the onset and time course of scalar inferences. Journal of Memory and Language, 51, 437-457

Heim, I., 1983. On the Projection Problem for Presuppositions. In D. Flickinger et al. (eds), Proceedings of the Second West Coast Conference on Formal Linguistics, 114-125

Kadmon, N., 2001. Formal Pragmatics. Blackwell.

Schlenker, P., 2006. Be Articulate! A Pragmatic Theory of Presupposition Projection. Manuscript.

http://www.linguistics.ucla.edu/people/schlenker/Be_Articulate.pdf