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Abstract

We refine previous methods to evaluate the existence of local scalar implicatures. We
show that these refined methods further confirm the existence of local scalar implicatures
(contra previous claims). We also demonstrate that these same methods can be applied to
settle other controversies, not restricted to scalar implicatures. Specifically, these methods
provide the way to quantify the relative salience of different interpretations for ambiguous
sentences, generally. Based on this method, we defend a conceptually motivated theory of
‘typicality projection’.

1 Introduction: truth-conditions, scalar implicatures and typicality

Formal semantics often targets categorial data: is such and such sentence true/felicitous or not
in a given situation? The access we have to such judgments, whether we use introspective or
more quantitative methods, may however be easily blurred by other aspects of language and
language use, as well as the nature of the judgment task itself. For instance, in a sentence-
picture matching task (where participants are asked to assess whether a sentence correctly
describes a picture), the participants’s responses may well reflect much more than just their
truth-conditional intuitions. Vagueness and ambiguities, as well as specific aspects of the judg-
ment task itself, may blur the binary true/false picture. It follows that in order to draw firm
conclusions from a truth-value judgment task regarding a given theoretical question, one needs
to have in mind, on top of a clear theoretical hypothesis, a testable model of the task itself,
i.e. precise hypotheses as to the way non truth-conditional aspects affect subjects’ performance.

This paper is a case study in which we investigate simultaneously a specific theoretical
hypothesis and the properties of a specific truth-value judgment task. We will be concerned with
two phenomena whose interaction may blur truth-conditional intuitions: typicality (understood
in a broad sense) and scalar implicatures.

Typicality refers to the attraction to some specific exemplars of a kind, which may count
as better representatives of their kind: a sparrow is a more typical exemplar of a bird than
a penguin. By extension, we will use the word ‘typicality’ to refer to the attraction to some
situations, as more or less good representatives of (the truth of) a proposition. In that sense,
typicality could surely blur categorial truth-value judgments. One may think that typicality
plays a particularly significant role when the judgment task involves a graded scale (rather than
binary judgments), but in principle it might well play a role in binary judgments as well.

A typical instance of a scalar implicature is the inference from a sentence such as (1-a) to
the conclusion that (1-b) holds.

(1) a. John ate some of the cookies.
b. John did not eat all of the cookies.

1We wish to thank Chris Cummins for very useful discussions. The research leading to these results has re-
ceived funding from the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n.313610 and was supported by ANR-10-IDEX-0001-02 PSL* and
ANR-10-LABX-0087 IEC.

1



The classical view is that this inference, which appears to be optional, is not a logical inference,
i.e. does not directly follow from the truth-conditions of (1-a) but rather results from a reasoning
about speakers’ communicative goals. However, scalar implicatures have given rise to a debate
as to whether they are really pragmatic in nature or rather reflect a genuine semantic ambiguity
(see Chierchia et al., 2012 and the references cited therein for a defense of the latter view).
Whether they are related to pragmatic, flexible processes or are a specific type of semantic
ambiguity, scalar implicatures may interact with and may be hard to distinguish from other
phenomena of a hybrid kind, e.g., typicality. This creates both conceptual and methodological
difficulties if one wants to settle empirical controversies about scalar implicatures.

The starting point of the current paper is a controversy in the realm of scalar implicatures.
The short version of the history is the following: some have argued for the existence of local
scalar implicatures (see Chierchia et al., 2012 and the references cited therein). Geurts and
Pouscoulous (2009) have produced data in which there was no sign of these inferences; Clifton
and Dube (2010) and Chemla and Spector (2011) have provided counterevidence arguing for
the existence of local scalar implicatures; van Tiel (2013) has argued that these studies were
confounded by typicality issues.

In this paper, we first discuss the current situation with respect to the localism vs. globalism
debate (section 2). In essence, we show that van Tiel (2013) offers a powerful method to re-
assess Chemla and Spector’s results, but that once it is applied properly and without eliminating
arbitrarily half of the data, the result is a confirmation of the initial interpretation. We will then
take advantage of van Tiel’s (2013) insights in two ways. On the methodological side, we will
show that we now have the means to quantify the relative salience of different readings for a
sentence (section 3). On the more theoretical side, we further discuss the ‘typicality structure’
of the quantifiers some and every, as an interesting phenomenon per se, and offers a model
which can lead to a theory of typicality projection (section 4).

2 Scalar implicatures: assessment of the quantitative arguments with van Tiel’s method

2.1 Theories of scalar implicatures: globalism vs. localism

According to the Gricean approach to scalar implicatures (SIs for short), SIs are pragmatic
inferences that result from a reasoning about the speaker’s communicative intentions. In re-
cent years, an alternative view of SIs (let us call it the ‘grammatical view’ of SIs) has been
put forward, according to which they result from the optional presence of a covert so-called
exhaustivity operator in the logical form of the relevant sentences and are thus reducible to
semantic entailment. (see Chierchia, 2006; Fox, 2007, Chierchia et al., 2012, a.o, building on
earlier grammatical approaches by, e.g., Landman, 1998, Chierchia, 2004).

While these two radically different approaches do not make distinct predictions in simple
cases, they do for more complex ones. In particular, if the ‘grammatical approach’ is correct,
then the exhaustivity operator should be able to occur in an embedded position (just like only),
so that the strengthening, say, of some into some but not all could occur ‘locally’, under the
scope of linguistic operators. This approach is often called ‘localist’, as opposed to more
pragmatic, so-called ‘globalist’ approaches.

Consider for concreteness the following example:

(2) Every student solved some of the problems.
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The standard neo-Gricean mechanism predicts that (2) should be interpreted as implying the
negation of its scalar alternative, i.e. the negation of ‘Every student solved all of the problems’.
Hence, (2) should give rise to the following reading (henceforth, we will refer to this reading
as the ‘global reading’):

(3) Every student solved some of the problems and at least one student didn’t solve them
all.

If, however, the strengthening of some into some but not all can occur at an embedded level,
as predicted by localist approaches, one expects that another possible reading for (2) is the one
expressed by (4) below (which we will henceforth call the ‘local reading’):

(4) Every student solved some but not all the problems.

It thus seems that determining the possible readings of sentences like (2) should provide
decisive evidence in the debate between localism and globalism. This is unfortunately not
so. For several formalized globalist theories of SIs (e.g., Spector, 2003, 2006; van Rooij and
Schulz, 2004; Chemla, 2008, 2009b) also predict that (4) is a possible reading of (2).2 Before
we continue, we would like to point out that quite generally we will be looking at a small subset
of the arguments that have been put forward in this vivid debate. It seems to us that quantitative
arguments coming from experimental methods have gained prominence. However, to draw
robust conclusions from these data, one must have a clear view of the theoretical landscape.
Note, in particular, that embedding under every is not the best possible case, as was discussed
in, e.g., Chemla and Spector (2011). Non-monotonic operators provide a much better test
case.3 We will stick to every here though, because this is where van Tiel’s analysis is relevant.
Contrary to van Tiel however, we will not also restrict ourselves to data concerning cases where
some is embedded under every. The interpretation we will propose for our data generalizes to
the cases where or is embedded under every, which van Tiel ignored.

2.2 Chemla and Spector’s results

Geurts and Pouscoulous (2009) tested sentences such as (2), but failed to find evidence for local
readings such as (4). Chemla and Spector (2011) used a similar sentence-picture matching task,
and did detect local readings. One important difference between the two sets of experiments is
that instead of asking for absolute judgments of truth or falsity, Chemla and Spector asked for
graded judgments: subjects were asked to position a cursor on a continuous line going from
‘No’ (i.e. ‘false’) on the left, to ‘Yes’ (i.e. ‘true’) on the right (see Fig. 1).4 Offering informants
more options than just true or false may help capture more fine-grained results, which could
reveal differences that remained hidden when subjects are given only two or three options. This
manipulation, however, may also allow other, irrelevant phenomena to intrude into the results.

2These theories do not derive this reading by localist means, of course. They argue instead that the proposition:
Some students solved all the problems should be added to the list of negated scalar alternatives of (2).

3Strikingly, it is hard to extend van Tiel’s view to the results we obtained for cases where a scalar item is
embedded under a non-monotonic operator such as exactly one, and no discussion of these cases is offered.

4See Chemla (2009a,c) for the use of a similar methodology to collect judgments in pragmatics, and the
references cited therein.
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no yesÚ

Figure 1: Response choice in Chemla and Spector’s (2011) experiments.

We will discuss this in more detail below, as this is the criticism put forward most prominently
by van Tiel (2013).

Chemla and Spector tested sentences of the form:

(5) a. Every letter is connected with some of its circles. (EVERY-SOME-sentences)
b. Every letter is connected with its blue or its red circle. (EVERY-OR-sentences)

They asked participants to evaluate such sentences when paired with different types of pictures
containing six cells in which one letter was surrounded by circles. For the EVERY-SOME-
sentence, let us call a cell a verifier if the letter in the cell is connected with some or all of
its circles (respectively with its blue circle or its red circle or both in the case of EVERY-OR-
sentences). Let us call a cell a strong verifier if the letter in the cell is connected with some
but not all of its circles (respectively with its blue circle or its red circle but not both). Now,
on its literal meaning, the sentence is true if and only if each cell is a verifier. On its ‘globally
strengthened’ meaning,5 the sentence is true if and only if each cell is a verifier and at least one
cell is a strong verifier. On the ‘local’ reading, the sentence is true if and only if each cell is a
strong verifier. The results are repeated in Fig. 2.

Some Or
FALSE-0: (.1%) (.2%)
FALSE-2: (12%) (7.7%)
FALSE-4: (24%) (26%)

LITERAL-0: (44%) (35%)
WEAK-2: (63%) (49%)
WEAK-4: (73%) (59%)

STRONG-6: (99%) (86%)

Figure 2: Results from Chemla and Spector (2011), including sub-conditions defined by the
number of strong verifiers in the picture.

The code in the left column encodes the two relevant properties of the picture the sentence
is paired with in a given condition: the word encodes the set of readings which were true and
the number in this code indicates the number of strong verifiers in the picture.6 We interpreted
the fact that the STRONG-pictures (all readings true) were rated higher than the WEAK-pictures

5Regarding the difference between the ‘global’ reading and the ‘local’ reading, we refer the reader to our
original paper.

6Specifically, in the FALSE cases: all readings were false (not every cell is a verifier); LITERAL: only the literal
interpretation (everyone of the six cells is a verifier but no cell is a strong verifier) is true; WEAK: both the global
and the literal readings are true but not the local reading (every cell is a verifier, some but not all of the cells are
strong verifiers); STRONG all readings literal, global and local are true (all the six cells are strong verifiers).
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(all readings except the local reading true) as evidence for the existence of the local reading.
Overall, the results lend themselves to the following interpretation: the three hypothesized
readings (literal reading, global reading and local readings) exist, and the more readings a
picture makes true, the higher the sentence-picture pair is rated.

However, as we pointed out, the scores seem to vary not only depending on which set
of readings is true, but also following the ‘number of strong verifier’ factor: even within the
FALSE pictures, participants provided higher rates for pictures containing more strong verifiers
(compare FALSE-0, FALSE-2 and FALSE-4, but also WEAK-2 and WEAK-4). This suggested
to us the following refined interpretation of our results: when two pictures are evaluated relative
to a certain reading, then even if both pictures make the reading false, the picture that is, in
some informal sense, ‘closer’ to a case making the reading true will receive a higher score. The
reason why FALSE-4 receives a higher score than FALSE-2 would then be that the FALSE-4-
pictures are less different from, say a WEAK picture, than the FALSE-2-pictures are. Hence,
the results would then be accounted by two interrelated factors:

(6) Two components in Chemla and Spector’s (2011) results:
a. Ambiguity component: which readings/how many readings are true?
b. Typicality component: how close is the picture to a true case?

In Chemla and Spector (2011), all the efforts were concentrated on the first component, (6-a)
and no quantitative evaluation of the role of (6-b) was proposed. van Tiel (2013) on the contrary
proposed a method to evaluate the typicality component (without assuming, as we did, that
typicality reflects ‘closeness to a true case’) and concluded that the effect of (6-a) was minimal
and that this factor was irrelevant to explain the difference between WEAK-4 and STRONG-
6. We will review van Tiel’s argument below (see section 2.3). We will argue that what he
proposes is a method to evaluate the contribution of the typicality factor, rather than a method
to evaluate the absence of contribution of (6-a). We will then apply his method to demonstrate
that there is an effect of (6-a), that is an effect of the local reading, beyond tipycality (see
section 2.4).

2.3 van Tiel’s challenge and method

van Tiel focussed on the EVERY-SOME case. He proposes an alternative interpretation of
Chemla and Spector’s data, one purely in terms of typicality. The view, more precisely, is that
the predicate ‘x is connected with some of its circles’, even on its literal reading, has a certain
typicality structure, whereby situations where x is connected with all of its circles count as less
typical than situations where x is connected with, say, half of its circles. Then, depending on
how typicality ‘projects’ under universal quantification, we may expect the STRONG-pictures
to be the most ‘typical instances’ of the universally quantified sentence, independently of is-
sues of implicature, because when each letter typically instantiates the predicate ‘be connected
to some of its circles’, one may expect that the universal sentence in (5) turns out to be itself
typically instantiated.

It might be argued that this notion of typicality is in fact derived from scalar implicatures
(see discussion in section 4.1). But van Tiel reports experimental data which he takes to show
that the ‘typicality structure’ of predicates containing ‘some’ does not just follow from the fact
that it implicates ‘not-all’. For instance, situations where five dots out of ten are black are
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judged more ‘typical’ instances of the sentence ‘some of the dots are black’ than situations
where two dots out of ten are black, and there is no straightforward explanation for this fact in
terms of scalar implicature (a point we will return to in section 4). Based on experimental re-
sults regarding the typicality structure of ‘some’ and how typicality projects under ‘every’, van
Tiel offered a model of our data in terms of typicality that does not involve scalar implicatures.
His model is based on the two following assumptions:

(7) Assumption 1- Typicality projection. Consider a universally quantified sentence ‘Ev-
ery A is a B’, in which B is a predicate subject to typicality. Let us then ask whether
a certain situation s is a typical instantiation of the sentence. For each individual αi,
let us note ρB(αi) the typicality value of s relative to the atomic sentence ‘αi is a B’.
Then the typicality value of s relative to ‘Every A is a B’ is the harmonic mean of all
the values ρB(αi), where αi ranges over all the A-individuals. In other terms, ρevery(s),
the typicality value of s with respect to the universally quantified sentence, is given by:

ρevery(s) =
n∑

1
ρB(αi)

(8) Assumption 2 - Typicality structure of some As are Bs. Let us now call ρsome(mixed)
the typicality value of a situation in which some but not all As are Bs, relative to the
sentence some As are Bs. Likewise, let ρsome(all) be the typicality value of a situation
in which all As are Bs, and ρsome(none) that of a situation in which no A is B. Based on
his results regarding the typicality structure of some, van Tiel is justified in assuming
the following:

ρsome(mixed) > ρsome(all) > ρsome(none)

On this basis, van Tiel performed the following simulation:

(9) van Tiel’s simulation: evaluating the role of typicality
a. Pick randomly a triplet of ordered values for ρsome(mixed), ρsome(all), ρsome(none),

complying with Assumption 2.
b. Compute the typicality value for a given picture, based on these 3 values and the

formula given in Assumption 1, namely:

ρevery(picture) =
6

nmixed
ρ(mixed) + nall

ρ(all) + nnone
ρ(none)

with: – nmixed the number of strong verifiers
– nall the number of cells in which the letter is connected to all its circles

(i.e. non-strong verifiers)
– nnone the number of cells where the letter is not connected to any circle.

c. Do this 5,000 times and average over the results for each of the seven pictures.

The result is then estimated as the product-moment between these average scores, the ‘pre-
dicted values’, and the observed values (from Chemla and Spector, 2011). van Tiel obtains a
correlation score of r = .99, p < .001, which shows that typicality as construed by van Tiel can
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explain most of the observed pattern. van Tiel thus argues that Chemla and Spector’s results
can be entirely explained in terms of typicality, and therefore do not provide any evidence for
the existence of the local reading.

However, there are two problems with this argument. First, granting, for the sake of the
argument, that typicality as construed by van Tiel is totally independent of scalar implicatures,
van Tiel’s simulation simply does not address in any way the question whether the local reading
exists. What it shows is that typicality can explain 98% of the data (r2 > .98). This does not tell
us whether taking into account on top of typicality the various (hypothetical) readings improves
the fit of the simulation, i.e. adds explanatory power. But this, it seems to us, is in fact the
critical question in this controversy. Second, in the absence of any explicit theory of typicality,
we cannot exclude that van Tiel’s measure of typicality may already reflect in part the role
played by scalar implicatures. In our paper, we acknowledged the role played by typicality, but
added that it seemed to us that “our results can be interpreted as reflecting typicality judgments
only if typicality is construed as relative to several distinct readings.” While this may have been
too strong a claim, we will argue in section 4 that our initial conjecture is in fact extremely
plausible, and preferable given certain considerations of parsimony and explanatory value.

2.4 A modified version of van Tiel’s simulation: taking into account readings on top of
typicality improves the fit

We had proposed that for a given sentence S, all things being equal, if the readings that are true
in condition C1 properly include the readings that are true in condition C2, the sentence will
receive a higher score in C1 than in C2. The picture however is blurred by typicality issues.
Assuming that typicality as construed by van Tiel is totally independent of scalar implicatures
(a very strong assumption that we will question in section 4), what we need to assess, then,
is whether taking into account the truth-value of various readings on top of typicality consid-
erations improves the overall fit of the simulation. To evaluate this, we inserted a step in the
simulation, between the second and the third step. We first chose an arbitrary value V , namely
V = 10,7 for rewarding readings (recall that possible scores range from 0 to 100), and given a
certain set of possible readings R, we proceeded as follows:

(10) Simulation 1: evaluating the explanatory value of different sets of readings, beyond
typicality
a. Pick randomly a triplet of ordered values for ρ(mixed), ρ(all), ρ(none), complying

with Assumption 2. (same as above)
b. Compute the typicality value for a given picture, based on these 3 values and the

formula given in Assumption 1. (same as above)
c. Additional step: For each picture, add to the typicality value a reward: V×(number

of readings in R that the picture makes true). So, if no reading in R is true rel-
atively to the picture, add nothing. If exactly one reading in R is true, add the
reward V once, etc.8

7We have tried several values here and it does not change anything; in fact, we also tried changing this value
randomly along with the rest of the sampling procedure and again the result was similar so we present the simple
version here.

8We applied this step for each set of readings on the same triplets, which allows us to run paired tests to
compare the contribution of different sets of readings.
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d. Do this 100 times and average over the results for each of the seven pictures.
(same as above, except for the number of iterations)

Different theories predict different sets of possible readings, and we can now compare the
different possible sets of readings, by comparing the fit that each set leads to, and ask which
set of readings provides the best fit (rather than which set provides a good fit). Let us note
immediately that it is not the case that considering more readings (or readings at all) provides
an intrinsic advantage to the models. The situation is not one in which we compare two linear
models with one relying on a larger number of predictors than the other. Instead, each model
makes a specific prediction, which may or may not be borne out.9

To compare the sets of readings on solid grounds, we used a bootstrapping technique: for
each set of readings, we ran the procedure above 100 times to gather 100 scores obtained for
each set of readings (a score is the product-moment correlation between the predicted values
of the simulation and the observed values). We were thus in a position to compare the distri-
bution of these scores.10 Assuming that the literal and the global readings uncontroversially
exist, we want to know which of the sets of readings L(ocalism)={literal, global, local} and
G(localism)={literal, global} better predict the results. We also ran the same simulation for the
EVERY-OR case, using the following typicality ordering for ‘A or B’: ρor(situations where A or
B but not both are true) > ρor(situations where both A and B are true) > ρor(situations where
neither A nor B is true). We find that L offers a significantly better predictor than G, both when
considering the some sentences (.998 vs .993, t(99) = 20, p < 10−15) and the or sentences
(.989 vs .978, t(99) = 49, p < 10−15).11

2.5 Interim summary

van Tiel (2013) argued that the data in Chemla and Spector (2011) deserved a better analysis,
one quantifying properly not only ambiguity but also typicality. He furthermore proposed a
specific model of typicality and typicality projection and provided the means to quantify the
role of typicality so construed. We provided a complete analysis of the data. Our analysis is
conservative in the sense that we assumed that typicality as construed by van Tiel is independent
of scalar implicatures. But in our analysis we explicitly evaluated the role of the readings
predicted by localist theories. Given that typicality à la van Tiel explains a great deal of the
data, taking it into account puts us in a difficult situation to demonstrate that some other factor
also plays a role. Yet, the results demonstrate that local scalar implicatures have an explanatory
role, beyond typicality.

3 Moving forward: a new method to evaluate ambiguities

We submit that the method offered by van Tiel (2013) can be used more generally to test
cases of ambiguity in a systematic manner and assess the relative accessibility of the different

9Note for instance that taking into account only the literal reading decreases the fit, compared to the model
where no reading is taken into account, i.e. van Tiel’s own simulation. This holds both for the some sentences
(.994 vs .989, t(99) = 17, p < 10−15) and for the or sentences (.994 vs .978, t(99) = 72, p < 10−15).

10We report statistics from paired t-tests (see also footnote 8), but other statistical tests lead to the same conclu-
sions.

11In fact L is a better predictor than any other set of readings (including the empty set, which corresponds to van
Tiel’s original simulation) for EVERY-SOME sentences and it is outperformed only by the set of readings which
excludes the literal reading ({global, literal}) for EVERY-OR sentences. See also Table 1 below.
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readings. We show how this applies to the case of scalar implicatures (and further buttresses
our conclusion). Instead of assigning a constant reward for each reading, we can ask what
weights should be given to each reading in order to obtain the best possible fit. If the local
reading plays no role in the data, it should not receive a significant positive weight. So we ran
a second analysis, still based on van Tiel’s elegant method and factoring out the contribution of
typicality (as construed by van Tiel), to evaluate the relative weights of the different readings.
We proceeded as follows.

(11) Simulation 2: evaluating the relative salience of different readings
a. Choose a triplet of ordered values for ρ(none), ρ(all), ρ(some but not all), com-

plying with Assumption 2.
b. Compute the typicality value ρE for the “every” sentence in the seven conditions

of Chemla and Spector’s data, given the triplet chosen in (a), and the rule in
Assumption 1.

c. Find out what’s the best way to fit C&S’s data by a linear model using as pre-
dictors: the typicality value obtained from (b) and the truth-value of each of the
different readings. We thus obtain the best possible ‘weights’ αtyp, αlit, αglob,
αloc for respectively typicality, the literal reading, the global reading and the local
reading. Formally, the model is as follows:

C&S’s score (cond) = αtyp ×ρE(cond)
+ αlit ×TVlit(cond)
+ αglob×TVglob(cond)
+ αloc ×TVloc(cond)

in which “TVx(cond)” is the truth-value of reading ‘x’ in condition ‘cond’.
d. Do this 100 times to obtain an estimation (mean and distribution) for each of the

different weights: the contribution of typicality and the contribution of each of
the readings.

Again, we also ran the same simulation for the EVERY-OR case. We obtain an estimate of the
weights that each (putative) reading should receive in order to best match the data. If a reading
R is not useful, the average weight ᾱR associated with it should not be different from zero. Note
that, by adding predictors to the model, we are guaranteed to improve the fit compared to van
Tiel’s initial model (contrary to the analysis presented in 2.4). The critical question, however,
does not have to do with the fit of the model (the r correlation cœfficient), but is rather whether
the weight assigned to each reading is positive. Mathematically speaking, this is in no way
a guaranteed outcome. Even though adding predictors to a model can only improve the fit,
nothing guarantees in advance that the weights of different predictors will be positive rather
than negative. Finding a significant positive weight for a reading would thus provide evidence
for the role played by this reading.

Crucially, the local reading was given a statistically significantly positive weight, showing
that it exists, both in the case of EVERY-SOME sentences and EVERY-OR sentences (ᾱloc =
4.97 and 3.31, respectively, ts > 11, ps < 10−20). Under this analysis, the local reading is in
fact given the heights weight (all ts > 10 in the relevant pairwise comparisons). The full results
are reported in Table 1.We conclude that if van Tiel’s typicality measure is the correct one, then
the local reading plays a role in explaining our data on top of typicality.
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‘some’ ‘or’
Literal reading αlit = 22, t(99) = 170 αlit = 14, t(99) = 110
Global reading αglob = 20, t(99) = 550 αglob = 15, t(99) = 420
Local reading αloc = 24, t(99) = 240 αloc = 25, t(99) = 260

Table 1: Weights obtained from simulation 2, as described in (11). All p-values are below
10−100.

The combination of Chemla & Spector’s methodology with van Tiel’s method and the
present modification of it could offer a way to evaluate the relative salience of different read-
ings quite generally. Concerning scalar implicatures, it may help address an aspect of the de-
bate which has often been oversimplified: one can often read (e.g., in Geurts and Pouscoulous,
2009) that the local reading should be the only reading according to localist approaches. This
is in fact not so (as we had stressed in Chemla and Spector, 2011). But, in any case, no explicit
account (from no camp) exists as to which readings are preferred and, practically, the relevant
data would be difficult to assess without a method such as the one we describe above.

4 Revisiting van Tiel’s data, towards a linguistic theory of typicality

We have shown that, even if van Tiel’s views on typicality were entirely correct, one could
demonstrate that scalar implicatures play a role in the task our subjects participated in. Now
we would like to come back to the question as to whether van Tiel’s typicality measure is in
fact the right one. In connection to the original debate, the point is this: we cannot assume
that the experimental data on the basis of which van Tiel constructed his typicality measure
does not already include effects of the truth-value of various readings (including strengthened
readings). More generally, we will argue that a conceptually motivated theory of typicality can
be developed.

In section 4.1, we will have another look at the data concerning what van Tiel calls the
‘typicality structure’ of ‘some.’ By (loose) analogy, one could relate this issue with what has
been called the ‘triggering problem’ in the realm of presuppositions. We will propose a simple
model that relates the typicality value for a sentence in a given situation to the distance between
the given situation and true/false situations. Such a notion of distance is natural in the realm of
‘typicality’, and we will show that the simple resulting model provides a good account of van
Tiel’s data.

In section 4.2, we will move to the question of typicality projection (under ‘every’). We
will proceed in two steps. First, we will show that there is no empirical reason to charac-
terize typicality projection under universal quantification by means of the harmonic mean, as
opposed, say, to some other type of mean (section 4.2.1). This will lead us to pursue a more
principled approach of the study of typicality projection and, again, propose a simple model for
it (section 4.2.2).

Finally, in section 4.3, we will show that the two models (for the triggering problem and
the projection problem, so to speak) are in fact based on the same primitive assumptions. We
will thus propose a general version of this model and tentatively submit it as a proposition for
a general linguistic theory of typicality.
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4.1 Typicality structure of ‘some’

Let us first look at the typicality structure of ‘some’. van Tiel reports the results of a task
where subjects had to rate the sentence ‘some circles are black’ when paired with different
pictures containing 10 circles, and where the number of black circles varied. The mean scores,
depending on the number of black circles, are given in Fig. 3.

	
  

situation contained five black circles, but what a prototypical situation is
may vary across contexts, depending on factors like total set size
(Newstead et al. 1987) and subitizability (Degen & Tanenhaus 2011).
The choice of prototype may even differ between participants, which
could explain the slightly less than perfect rating for the situation with
five black circles. In addition to distance from the prototype, the mean
rating for a situation depended on the truth value (17) in that situation.
Situations where the sentence was true received a substantially higher
rating than situations where it was false (i.e., the situations with zero or
one black circle). The following definition captures these factors, where
vS(‘some A B’) denotes the truth value of ‘some A B’ in S, and Z is a
normalizing factor to ensure that the typicality values occur in the inter-
val (0, 1] (e.g., Lesot et al. 2005).

(19) !
SOME A B

ðSÞ ¼ 1$ 1
Z ðdistðS $ PÞ2 þ vSð‘some A B’))

Depending on what value is associated with the distance between ad-
jacent situations, this model fits almost perfectly to the data (for instance,
assuming that the distance between any two adjacent situations equals 1,
r= .95, p< .001).

The models for SOME and EVERY are only proposed because they
provide a good fit to the mean ratings found in the experiments. The
model for SOME is less fine-grained than the one for EVERY, which
calculated the typicality value of a situation on the basis of the typicality
values of the elements in the domain. Presumably, this can be done for
SOME too, but it would be inconsequential for my argument, which only
requires the assumption that a situation where some but not all of the
circles are black is more typical of (17) than a situation where all of the
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Figure 6 Mean typicality rating for the sentence ‘Some of the circles are black’ in situations
with ten circles. The error bars represent 95% confidence intervals. The stars represent the

scaled typicality ratings predicted by the definition in (19).
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Figure 3: Figure 6 from van Tiel (2013). Mean typicality rating for the sentence ‘Some of the
circles are black’ in situations with ten circles. (...)

On this basis, van Tiel assumed that, in our own task, strong verifiers (i.e. cells in which
the letter is connected to some but not all of its circles) are more typical instances of the predi-
cate ‘be connected with some of its circles’ than weak verifiers (i.e. cells in which the letter is
connected to all of its circles), and that weak verifiers are more typical instances of this pred-
icate than cells in which the letter is connected to no circle. This is of course consistent with
van Tiel’s data about ‘some’, but the scores obtained by van Tiel for ‘some circles are black’
may in fact simply reflect the conjunction of the literal reading of the sentence and the ‘not-all’
scalar implicature. If this were so, then van Tiel’s simulation of our results for EVERY-SOME

sentences could be plausibly argued to integrate the potential effect of strengthened readings,
including even the ‘local’ reading. In this case, not only would it be impossible to conclude that
typicality is sufficient to explain our data (something we have excluded above), it also could not
be claimed that typicality considerations provide a useful explanation for Chemla and Spector’s
data that does not resort to the ‘local’ reading of EVERY-SOME sentences to begin with.

It is thus crucial even to a weaker version of van Tiel’s claim, namely that typicality as
an independent factor matters, that the results he gathered for ‘some’ are independent of scalar
implicature computation. As an argument for the view that the ‘not-all’ scalar implicature plays
no role in the ‘typicality structure’ of some, van Tiel notes that cases where about half of the
circles are black are judged ‘more typical’ than cases where, say, 3 or 8 out of the 10 circles
are black, even though in all these cases the ‘some-but-not-all’ reading of the sentence is true.
But this is clearly a non sequitur. At best, van Tiel’s data for some show that the strengthened,
‘some but not all’-reading does not explain all of the data, not that it plays no role. In fact,
based on this spurious logic, van Tiel should also have concluded that the literal reading plays
no role in the typicality structure of some (since the literal reading cannot either explain the
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different ratings received by pictures with 5 black circles vs. those with 3 or 8 black circles).
Yet, strikingly, van Tiel’s model of typicality for ‘some circles are black’ does in fact include
the truth-value of the literal reading of the sentence as a factor. Indeed, van Tiel offers the
following model to capture the typicality structure of ‘some’:

ρSOME A B = 1− 1

Z
[(S − 5)2 + vS(‘Some A B’)],

where Z is a normalizing factor ensuring that the final value will lie between 0 and 1, S is the
number of black circles, and vS(‘Some A B’) is the truth-value of the literal reading.

The view is that a situation with 5 black circles is ‘prototypical’, so that (S − 5) can be
viewed as the distance between the picture and the ‘prototypical’ situation. Testing this model
against his experimental data, van Tiel obtains an excellent correlation r = .95, p < .01. The
fact that prototypical situations are those that are more ‘central’ is thus taken as a primitive in
van Tiel’s system. Ideally, however, it would be preferable to derive this ‘central’ tendency
from an independent property of the word ‘some’, or possibly some more general cognitive
bias. To us, the results reported by van Tiel seem to be expected if speaker’s judgments for each
picture are entirely driven by a) the strengthened reading (‘some but not all’) and b) subjects’
perception of the ‘distance’ between a situation and minimally different situations making this
reading true or false. More specifically, here is a simple set of assumptions that can capture van
Tiel’s results:

1. The sentence ‘Some circles are black’ is most saliently understood as equivalent to ‘At
least two circles are black and not all circles are black’. (This assumption will be relaxed
later on in section 4.3 when we take into account possible ambiguities).

2. In van Tiel’s graded judgment task, the subjects’ rating of a picture is a linear function
of a) the ‘distance’ to the ‘closest’ case making the sentence false (one expects a positive
coefficient here), b) the distance to the closest case making the sentence true (one expects
a negative coefficient here), c) the truth-value, relative to the picture, of the proposition
under consideration (again, a positive coefficient is expected).

3. The notion of ‘distance’, for the kind of pictures used in van Tiel’s experiments, can be
plausibly approximated as follows: given a certain picture, the distance to the ‘closest’
case making the sentence true (resp. false) is the smallest number n (possibly 0) such that
changing the color of n circles in the picture would make the sentence true (resp. false).12

In other words, we suggest the following linear model:

(12) ρ‘some circles are black’(picture) = constant
+ α× Truth-value
+ β × Distance to the closest true case
+ γ × Distance to the closest false case

With such a model, on the basis of the strengthened reading (‘at least two circles are black,
and not all are’), we obtain an excellent fit of van Tiel’s results reported in Fig. 3 (r > 99, p <

12We should note however, that what we know of numerical cognition (e.g., Dehaene, 1997) leads us to expect
that the perceived distance between 9 and 10 is in fact smaller than that between 1 and 2.
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10−5). The weight of the predictor ‘Truth-value’ is, as expected, positive, but is not significantly
different from 0 (α = 0.46, p = .24) and the weights for ‘distance to the closest true case’ and
‘distance to the closest false case’ both have the expected sign and are significantly different
from 0 (β = −0.65, p < .05, γ = 0.42 : p < .0005). Hence, van Tiel’s typicality data can be
explained by what we see as minimal assumptions about the role of the distance between the
current situation and true and false situations.

4.2 A model of van Tiel’s data regarding projection under ‘every’.

We now turn to the projection of typicality under ‘every’. First, we will show that there is some
arbitrariness in van Tiel’s proposal (section 4.2.1). Second, we will propose an alternative
model, whereby in fact typicality projection is based on the same principles as the derivation
of the typicality structure of some (section 4.2.2).

4.2.1 ‘Typicality’ projection under ‘every’: why the harmonic mean?

van Tiel’s rule for typicality projection under ‘every’ is based on the harmonic mean. The
reason why he chose the harmonic mean rather than some other type of mean was because it
provided a good fit (with a specific choice of parameters, r = .97) with respect to the data
he gathered concerning the projection of typicality under ‘every’. Note however that it did not
provide the best possible fit among a set of reasonable candidates: the geometric mean provides
an even better fit, r = .98.13 We suspect that the reason why van Tiel used the harmonic mean
is that it provided a better fit than the geometric mean in his simulation of our own data, as we
will see shortly. However, we now have provided evidence that even if we accept that van Tiel’s
own model of typicality projection under every, the various readings hypothesized by localists
play a role in explaining the data. So the fact the harmonic mean, in the context of van Tiel’s
simulation, led to a better fit than the geometric mean for modeling our original data gives no
strong reason to assume that typicality projection under every should be modeled in terms of
the harmonic mean. Rather, what we need to assess is which type of mean is the best when
readings are taken into account in the simulation.

We ran various analyses to compare different choices of means. First, we ran simulations
à la van Tiel, using the harmonic mean, but also the arithmetic mean and the geometric mean.
Second, we ran simulations in which the various hypothesized readings are taken into account.
We took the readings in consideration as in section 3, by choosing the best possible weights for
the readings each time. Contrary to what we did in section 3, we were now interested in the
quality of the fit of the resulting model, when obtained using three different types of means for
the computation of the typicality value: the harmonic mean (as before), the arithmetic mean or
the geometric mean.

The results are not robust. If we do not take into account the readings (but why wouldn’t
we?), the harmonic mean seems to provide a better fit for EVERY-SOME sentences (Table 2).
Hence, it certainly was a good choice from van Tiel’s perspective. But this result does not
generalize. First, it does not generalize to EVERY-OR sentences, for which the geometric mean
provides a better fit (t(99) = −3.8, p < 10−3). Second, if we take the readings into account
(Table 3), the harmonic mean is the one that provides the poorest (although still very high) fit
from the three types of means with both EVERY-OR and EVERY-SOME sentences (all ts > 50).

13We recovered van Tiel’s data from the graphs presented in the paper, i.e. by measuring bar lengths by hand,
with a ruler.
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EVERY-SOME EVERY-OR

Harmonic mean .991 .988
Geometric mean .970 .994
Arithmetic mean .815 .857

Table 2: Correlation cœfficients for models based on different types of means, without taking
possible readings into account (à la van Tiel).

EVERY-SOME EVERY-OR

Harmonic mean .9911 .9837
Geometric mean .9966 .9931
Arithmetic mean .9942 .9882

Table 3: Correlation cœfficients for models based on different types of means, taking possible
readings {literal, global, local} into account.

Given such results, the data discussed here provide no reason to pick the harmonic mean
over the geometric mean. In fact, it is not clear that a mean-based theory of typicality projection
under ‘every’ is adequate and can be motivated by empirical arguments of the kind we try to
produce above or by independent conceptual reasons. In fact, it is hard to extend a mean-
based theory of projection to other quantificational or embedding environments. In the next
subsection, we propose an alternative model of the typicality projection under ‘every’, which
is conceptually simple and which is principled, in the sense that it can be generalized to any
environments without specific assumptions about these environments (This desiderata mimics a
vivid discussion about the explanatory power of various accounts of presupposition projection,
see, e.g., Rothschild, 2008 and references therein).

4.2.2 Typicality projection under ‘every’: a model

Let us take a closer look at van Tiel’s results about typicality projection under every. van Tiel
asked for ‘typicality judgements’ for sentence-picture pairs with the sentence ‘Every circle is
black’, and where the picture contained a certain number of black circles and a certain number
of white circles (out of ten circles). These results are summed up by the graph reproduced in
Fig. 4.

van Tiel models these data in the following way: for every picture, a) he assigns a very
low typicality value (e.g., .1) to each white circle, and a very high typicality value to each
black circle (e.g., .95), and b) he takes the harmonic mean (as we have already discussed) of
the typicality values assigned to each individual circle to be the typicality value of the picture
relative to the universally quantified sentence. As we saw, the reason why the harmonic mean is
used is post-hoc: it is better than the arithmetic mean (but not the geometric mean) in predicting
the striking ‘leap’ between the last two bars (i.e. the fact that the score of a picture increases
much more when you go from 9 black circles to 10 black circles than when you go, say, from
4 black circles to 5 black circles).14

14The precise prediction of van Tiel’s model based on the harmonic mean depends on the typicality value
associated to each individual circle relative to the predicate ‘black’. van Tiel reports that “the correlation exceeds
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a situation with only white circles has barely any effect. This observation
can be modelled by weighing the typicality values of the individual
instances in such a way that lower typicality values carry more weight
than higher typicality values. This can be done, for instance, by weigh-
ing the typicality values by their reciprocal, which yields the harmonic
mean of the typicality values.

(13) !
EVERY A B

ðSÞ ¼ n
!!BðaiÞ$1, where A={ai, . . . , an}

According to this definition, the typicality of a situation depends on the
typicality of every element in the domain with respect to the predicate,
with bad instances exerting more influence on the typicality of the
situation than good instances. Depending on the precise typicality

Figure 4 Experimental item from the rating experiment for EVERY.
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Figure 5 Mean typicality rating for the sentence ‘Every circle is black’ in situations with ten
circles. The error bars represent 95% confidence intervals. The stars represent the scaled

typicality ratings predicted by the definition in (13).
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Figure 4: Figure 5 from van Tiel (2013). Mean typicality rating for the sentence ‘Every circle
is black’ in situations with ten circles. (...)

To us, it seems that van Tiel’s data can be efficiently described in two steps: on the one
hand, in all the cases where the sentence is false, the rating of a given picture increases linearly
with the number of black dots, and, on the other hand, in the only case where the sentence
is true, there is some kind of an added bonus. That is, we may propose a very simple model
in which the rating of a picture relative to the universal sentence is a linear function of a) the
number of black dots in the picture, and b) the truth-value of the sentence relative to the picture
(and we expect positive weights for these two factors):

(13) ρ‘some circles are black’(picture) = constant
+ α× Truth-value
+ β × Number of black dots

Since the number of black circles in a picture can be viewed as a measure of how close the
picture is to a ‘true case’ (the more black dots, the closer are we to a case making true ‘Every
circle is black’), this interpretation amounts to saying that the observed ratings correspond to
the combination of a categorical judgment (true vs. false) and a ‘typicality’ judgment that is
itself driven by truth-conditional considerations. In fact, with such a linear model, on the basis
of van Tiel’s data, we obtain an excellent fit (r > .99, p < 10−7), with both predictors receiving
a positive weight significantly different from 0 (α = 1.74, β = .26, ts > 9, ps < 10−5).

4.3 Discussion: towards a general model of typicality

4.3.1 A single model for ‘every’ and ‘some’

In contrast with van Tiel who proposed two unrelated (and unmotivated) models for ‘every’
and for ‘some’, we in fact used exactly the same model in both cases. Although it is possibly
not visible from the comparison of the equations in (12) and (13), it is so for two reasons. First,

r=.93 for almost all possible values such that ρ(black)> ρ(white).” With ρ(black)= .95 and ρ(white)= .1, he
obtains r = .97.
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‘Number of black dots’ in the case of ‘every’ is equal to 10-‘distance to a false case’, so that
‘Number of black’ in the model for ‘every’ plays the same role as ‘distance to a false case’ in
the model for ‘some’. Second, ‘distance to the closest false case’ turns out to be identical to
‘truth-value’ for ‘every’ (it is so because all cases but one are false so that the distance is either
0 if the sentence is false or 1, if the situation happens to be the true situation). For this reason
there is no need to include an independent ‘distance to a false case’ in the model for ‘every’.

So we can now evaluate how our model is able to predict the data for both ‘some’ and
‘every’ together. Putting together van Tiel’s data for both ‘some’ and ‘every’, we obtained 22
data-points (2 sentences × 11 pictures, each picture containing from 0 to 10 black circles). We
ran a linear regression based on our model. We added as an additional predictor the sentence-
type (‘some’ vs. ‘every’). This amounts to allowing for different acceptation biases for different
kinds of sentences, which could also be captured by allowing for the constant in the following
equation to depend on the sentence. See also footnote 15). Concretely, we tested the following
model:

(14) ρ(S, w) = constant
+ α× Truth-value of S in w
+ β × Distance between w and the closest true case
+ γ × Distance between w and the closest false case
+ δ × [S=‘some of the dots are black’ vs. S=‘every circle is black’]

We obtain again an excellent fit (r > .99, p < 10−14), and each predictor is assigned a weight
significantly different from 0 (all ps < 10−5), and of the expected sign (α = 1.10, β =
−.27, δ = .39).15

In essence, these results suggest that there might be a very simple general model of typi-
cality. This model makes typicality structure dependent on the truth-conditions of the relevant
sentences and on some notion of distance between situations. Ideally, we would like to apply
this model to our test cases. There will be several complications to do so, one of them is the
fact that this model does not yet take ambiguity account.

4.3.2 A model of typicality, taking ambiguity into account

In this section, we want to take into account possible ambiguities. In essence, we are going to
assume that if a sentence has several possible interpretations, their typicality values are going
to be combined according to the relative saliency of these different readings. So, consider
a sentence S with two possible readings: R1 and R2. Assume that we can define saliency
weights for these readings w1 and w2, in a way that R1 is more salient than R2 to the same
extent as w1 is larger than w2. Thus the typicality value of S, we assume, can be captured as
the weighted sum of the typicality values of the readings:

(15)
15Additionally, we obtain γ = 1.69, t = 14, which basically shows that ‘every’ sentences received an overall

higher rating.
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ρS(w) = constant
+ w1 × ( α× Truth-value of R1 in w

+ β × Distance between w and the closest true case for R1
+ γ × Distance between w and the closest false case for R1)

+ w2 × ( α× Truth-value of R2 in w
+ β × Distance between w and the closest true case for R2
+ γ × Distance between w and the closest false case for R2)

In this model, the notion of typicality is captured by the parameters α, β and γ. In this model,
this triplet of values is the essence of how typicality emerges from truth-value and distance to
true/false cases. These parameters are here assumed to be the same for all possible readings of
a sentence. Similarly, our joint model for ‘some’ and ‘every’ above was such that the triplet
(α, β, γ) was assumed to be the same for both kinds of sentences.

Let us go back to the case of ‘some’. ‘Some circles are black’ has two possible interpreta-
tions a weak (literal) interpretation and a strengthened (‘not all’) interpretation. In section 4.1,
we proceeded as if it had only the strong interpretation, but we can now take the two inter-
pretations into account. Applying the non-linear model , the estimates for the weights of the
strong and weak interpretations are wstrong = .086 and wweak = .00041. As a result, the strong
interpretation is 200 times more salient than the weak interpretation, or less controversially, it
will not play much of a role in the model. As a result, it is not a surprise that the result of this
new model is not different from the results from the simpler model. In particular, the (α, β, γ)
triplet we obtain is (5.6, -7.4, 4.9), which is roughly equal to wstrong times the triplet obtained
in section 4.1 (.46, -.65, .42) (the multiplication gives: 5.4, -7.6, 4.9).

4.3.3 Applying the model to our test cases?

We now have a general model of typicality, as summarized in (15). For any sentence, however
complex, the way to solve the typicality projection problem would involve a) determining the
various readings of the sentence, and b) defining a metric thanks to which the notion of ‘distance
to a true/false case’ can be defined.

We already suggested in our initial paper that the rating of a given picture for EVERY-SOME

sentences should depend on the distance of the picture to situations making various readings
true or false, and we should now have the means to objectively evaluate this claim. However, we
cannot immediately test how such a model fares when applied to the type of data we discussed
in our original paper. There are two technical problems:

1. The relevant notion of ‘distance’ is much harder to define in the case of complex pictures
of the type we used than it is for the kind of pictures tested by van Tiel. Note for instance
that, on the one hand, a ‘strong verifier’ (a cell in which the letter is connected with some
but not all of its circles) is intuitively closer to a falsifier (a cell in which the letter is
connected to no circle) than a weak verifier is. So a picture that contains only strong
quantifiers is in some sense quite close to a case of falsity. But, on the other hand, such
a picture is one where all of the three readings we hypothesized are true. There is no
straightforward notion of distance between pictures that we could confidently use in this
case without further providing independent arguments (see also Cummins, 2014, which
phrases this difficulty in an elegant way, making it a 2D problem.).
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2. If we want to test the role played by the various readings, the relevant predictors in the
linear regression will include: a constant, the weights of the different readings and the
(α, β, γ) triplet of factors, i.e. in principle 7 different predictors for only 7 data-points if
we consider only EVERY-SOME sentences.

Hence, we do not believe that the available set of data allows us to test our general model
of typicality in a serious way. But more data can be collected to (i) ground a realistic notion of
distance and (b) test our corresponding general model of typicality.

One advantage of our model is that it applies to virtually any sentence. The mean-based
account was oriented towards the ‘every’ sentences. Our model is not. One appreciable conse-
quence of it is that it could make predictions for EXACTLY ONE-SOME sentences of our initial
experiments, which we argued came at the core of the scalar implicature issue. We see a broader
application of the current typicality model, including application to these non-monotonic cases
and others, as an interesting direction for future research.

5 Summary and conclusion

In this paper, we have made use of methodological and conceptual insights of van Tiel (2013).
First, we have re-assessed evidence put forward in favor of the existence of local scalar impli-
catures. We conclude that the evidence is solid. We would like to note that we have left aside
other kinds of evidence along the way. Most prominently, we did not discuss non-monotonic
environments, which we argued in Chemla and Spector (2011) provide a much better test-case.
We also did not discuss other arguments coming from the interaction between scalar implica-
tures and Hurford’s constraint (see Chierchia et al., 2012; Singh, 2007; Chemla, 2013) or from
intermediate scalar implicatures (see Sauerland, 2012).

Second, we have shown that the results obtained by van Tiel regarding the typicality struc-
ture of some and every can be accounted for by a very simple model in which the rating of a
sentence relative to a picture is an increasing linear function of its truth-value, how close the
picture is to a case making the sentence true, and how far the picture is from a case making
the sentence false. This suggests to us that our initial interpretation of our own data was on the
right track.

Third, we have embraced what we believe is an interesting issue raised by van Tiel’s project,
quite indepenently of scalar implicatures, namely the issue of typicality projection. Presuppo-
sition projection and the interactions of scalar items with various linguistic operators have been
studied extensively. There is no reason why typicality projection could not follow the same
path.
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